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EXECUTIVE SUMMARY

The state-of-the-art review on Composite Material Fatigue/Damage Tolerance has
served to direct more attention toward the complexities involved in identifying
accurate theories and methods needed to characterize fatigue failure criteria
and, in particular, to identify fatigue failure mechanisms.

An extensive literary survey was conducted to compile references related to the

general area of fatigue of composite materials and, in particular, to identify
those references which are directly related to fatigue/damage tolerance. While
the mechanical and physical properties of laminae are well known, the precise
determination of fatigue failure characteristics of a laminate is quite complex.
Presently, there is no precise definition regarding what constitutes fatigue damage
of the overall laminate. However, accumulated fatigue damage of the various
laminae taken on a collective basis forms the definition of laminate fatigue
damage. More specifically, while the fatigue failure of the laminate is identified
by being able to predict, analytically, the fatigue failure of a uniaxial fiber
composite, two problems remain regarding the analysis of fatigue failure of
unidirectional fiber composites. Namely, there is no established fatigue failure
criteria for combined cyclic stresses and the inherent difficulty in predicting
lifetime under variable amplitude cycling - which is known as the cumulative damage
problem. Consequently, the complexities associated with fatigue/damage tolerance
are augmented by the fact the fatigue failure process encompasses initiation,
development, and termination aspects of failure. The failure life prediction
methodoloqies constitute fundamental ways to measure fatique in fiber composite
structures. Presently, these methodologies include stress-based methodologies,
strength degradation models, and damage growth models.

* tress-based methodologies are characterized by the fact that there are certain
fundamental laminae stresses, found through measurement or calculation, which can
be linked to the damage states of the laminae and subsequently used to predict
the fatigue life of the laminate. The study provided a critical review of stress-
based methodology literature and found a link between static strength and a basic
cumulative damage model. The form of the failure function is found through S-N
curves, tound from testing off-axis unidimensional specimens. The failure criter-
ion, in turn, is based on information manifested throuqh the material fatigue
functions and the stress ratio.

5trength degradation models are concerned with concepts manifested in the predic-
tion of lifetime under cyclic loading conditions. Residual strength degradation
is used as a measure of fatigue failure of fiber composites. When static strength,
defined as residual strength after N cycles, equals the maximum stress amplitude,
fatigue failure occurs. While the concept of residual strength remains an
important parameter in the identification of lifetime for a unidirnensional fiber
composite, strength degradation of laminates is a complex problem and presently can-
not De defined or evaluated strictly in terms of macromechanics. Thus, stiffness
reduction is used to measure laminae damage accumulation.

Kegdrding damage growth modeling, this study indicates that a number of researchers
emphasiZe that delamination growtn is the fundamental issue in the evaluation of
laminated composite structures for durability (fatigue) and damage tolerance
kSdfety). However, there are pitfalls associated with fatigue damage nodelinq,and
imore attention must be paid to the number of cycles to tailure, particularly
regarding the scale of the body being modeled.

ix
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Regarding non-destructive testing methods of fibrous composite materials, there

* are presently six recognized approaches, however, no particular non-destructive
technique can be used with certainty for all configurations. Test methods must be
selected and tailored to each item, and the geometry of the part must also be
taken into account.

For inspection of damage after dynamic fatigue loading, ultrasonic techniques
should be included among the most useful methods. On the other hand, holography
is effective as far as detecting delaminations and cracks in the surface piles but
does not detect subsurface matrix cracking. Likewise, since video thermography
relates the thermal patterns more directly to the stress field in the material, it
is a more appropriate model for studying the mechanical behavior of composite
materials.
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INTRODUCTION

BACKGROUND AND OBJECTIVES.

The investigation of fatigue/damage tolerance problems during the past five

years has generated a significant amount of information, both analytical %%
and experimental, pertaining to composite materials. Many new composite
materials have been developed during this period -- so many, in fact, that
the government and the industrial world are looking for ways to qualify and
quantify the mechanical behavior exhibited by combinations of materials
heretofore not used.

At the present time, numerous procedures, some analytical - others empiri-
cal, are used to substantiate the fatigue/damage tolerance aspects of civil
and military composite aircraft structures. However, no single or series

of widely-recognized procedures exist for verifying the basic fatigue
mechanisms associated with fatigue/damage of these structures.

Fiber reinforced materials such as carbon, graphite, boron, and glass rein-
forced plastics are currently certified for usage in composite aircraft
structures. On the other hand, new epoxy resins are currently being
studied for usage in composite aircraft structures.

The objective of this study is to perform a comprehensive quantitative anal-
ysis of fatigue/damage tolerance methodologies of composite materials and
correlate these methodologies with empirical data in order to establish a
procedure for evaluating composite materials used in civil aircraft struc-
tures.

LITERARY SURVEY

Although the mechanical and physical properties of laminae are now well
known, the precise determination of fatigue failure characteristics of a
laminate is quite complex. More analytical work remains to be done
before this particularly thorny problem can be considered solved (reference 1).

In essence, a characterization (or characterizing) of a composite material,
in regard to fatigue, is simply a description of characteristics or pecul-
iar qualities. Thus, one can focus attention on identifying fatigue
failure processes. Hashin (reference 1) indicates there are two major
failure processes: intralaminar and interlaminar. In the intralaminar
fatigue failure process, the intralaminar cracks which have accumulated in
the fiber or matrix modes run parallel to the fibers. The interlaminar

fatigue failure process involves the opening up of an interlaminar edge
crack which splits the laminate, but continues to grow as the cycling pro-
cess continues.

The question of fatigue damage for laminates is even more complex, and it -"

is necessary to define fatigue damage, at least in some qualitative form,
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before th2- notion of fatigue life prediction can be addressed. Fong
(reference 2) in his definitive paper uses four typical damage parameters
to identify damage. They include normalized residual tensile strength,
maximum damage length, number of debonded fibers, and total resin crack
length. He concludes that the last damage parameter shows the greatest
promise regarding the identification of fatigue damage on an analytical,
rational basis. While the precise question regarding what constitutes fa-
tigue damage of the overall laminate has not been answered, it is safe to
say the accumulated fatigue damage of the various laminae taken on a
collective basis forms the definition of laminate fatigue damage. Thus,
presently, the question of fatigue failure of the laminate is answered by
being able to predict, analytically, the fatigue failure of a uniaxial
fiber composite. Hashin (reference 1) indicates the two major problems in
analysis of fatigue failure of undirectional fiber composites are: (1)
establishment of fatigue failure criteria for combined cyclic stress; and
(2) prediction of lifetime under variable amplitude cycling - which Is
known as the cumulative damage problem. Hence, the fatigue failure process
encompasses initiation, development, and termination aspects of failure.
The fatigue life prediction methodologies constitute reasonably fundamental
ways to measure fatigue in fiber composite structures. Presently, these
methodologies encompass three fundamental types, namely: stress-based
methodologies, strength degradation models, and damage growth models.

STRESS-BASED METHODOLOGIES.

These methodologies are characterized by the fact that certain fundamental

stresses are known (measured or calculated) in the laminae which can be
linked to the damage states of the laminae and subsequently used to predict
the fatigue life of the laminate.

While experiments alone have not been sufficient to describe the failure
behavior and thus provide the foundation of a failure criteria represen-
tative of all fiber composites, they did, during the early 1970's, provide
valuable information regarding the relationship between failure and fiber-
matrix strength and properties. Rosen and Dow (reference 3) conducted
experiments which showed a link between static strength and a basic cumula-
tive damage model.

Hashin and Rotem (reference 4) recognized that fatigue failure, due to the
extreme complexities involved in attempting to characterize fibrous com-
posite behavior, should be based on macromechanics and macroscopic-oriented
criteria, wherein such failure criteria can be identified based on the
average stresses to which the composite is subjected. The form of the
failure criterion is dictated by two distinct experimentally observed
failure modes. Three S-N curves, found from testing of off-axis unidirec-
tional specimens undergoing uniaxial load, are used to express the failure
criterion. The failure criterion, in turn, is based on information mani-
fested through the material fatigue functions and the stress ratio.

2
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Mandell and Meier (reference 5) described crack growth in a stepwise
fashion with the crack remaining stationary for many cycles before each
step of growth. They use the S-N curve of the unnotched material to
describe how the ligament at the crack tip is fatigued. Using an assumed
stress field and cumulative damage law, the number of cycles for initial
growth from a notch and the rate of crack growth are predicted. The
experimental results agree well with this simple theory.

Rotem and Hashin (reference 6) used failure criterion (reference 4) to
determine if the subsequent fatigue of laminates can be predicted based on
the presence of failed or degraded laminae. Using the results of a recent
analytical and experimental investigation (reference 7), it was concluded
for angle plies greater than 45. the failure criterion is substantiated by
good agreement between theory aria experiment, whereas for angle plies less
than 45%, the failure criterion underestimated the fatigue failure load.

The effects of compression load on the failure response of fibrous lam-
inates were investigated by Ryder and Walker (reference 8). Extensive
testing, under constant amplitude loading, was conducted at three different
stress levels. It was found that compressive load greatly reduced fatigue
life at lower stress levels.

Angle-ply notched and unnotched fibrous composites were studied experimen-
tally by Ramani and Williams (reference 9). Using unnotched specimens, S-N
curves were drawn using various stress ratios R. In particular, tension-
tension (T-T), tension-compression (T-C) and compression-compression (C-C)
cycling studies were conducted in order to determine fatigue damage.
Overall results were expressed in the form of a constant life diagram
(Goodman diagram) showing the relationship between mean stress and stress
amplitude. Experimental results indicate it is possible to relate notched
fatigue behavior to unnotched fatigue behavior for various laminates under
T-T cycling. Resistance to damage accumulation under T-C cycling can be
effectively compared for various laminates by measuring changes in crack-
opening displacement (COD) during cycling.

Sims and Brogdon (reference 10) recognized that when the matrix contribu-
tions to load carrying capability are significant, the fatigue charac-
teristics of these composites can be quite different from those of the
fiber-dominated matrix. They performed experiments to gain a better
understanding of matrix-dominated fatigue behavior of fibrous composites.
Existing static strength failure theories were used to predict fatigue
strength. These theories require a knowledge of fatigue functions in the
principal material directions of a laminae to predict the first-ply failure
of a laminate. Using general regression analysis on the fatigue test data
at various stress ratios, much of the testing required to develop the S-N
curve at specific steady-stress levels was eliminated, and the use of the
static based theories reduced the required amount of fatigue testing of
laminates composed of different fiber orientations.

, . . . ............... . .. .... .. .. ...--.... -
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Wang, Chou, and Alper (reference 11) investigated experimentally the
effects of static proof testing on the statistical distribution of the
static streng'h and fatigue life of a unidirectional laminate. Using this
proof-test procedure and unidirectional test data, they verify that the
equal-rank assumption appears to be both reasonable and practical.
However, additional study is needed to determine the practicality of using
this concept for laminates of different fiber orientations and stacking
sequences.

Hashin (reference 12) provides conceptual insight into the rationale
underlying the establishment of three-dimensional macromechanical static
and fatigue criteria for unidirectional fiber composites. Based on signif-
icant laboratory data for the static case, it was concluded that such com-
posites exhibit four distinct failure modes. For fatigue failuie, there is
a family of fatigue criteria, each associated with a different lifetime.
Further, it was recognized that transverse isotropy exists in the com-
posite. Analytically, quadratic stress polynomials are used to model
fatigue behavior.

STRENGTH DEGRADATION MODELS.

Strength degradation models are concerned with concepts manifested in the
prediction of lifetime under cyclic loading conditions. Presently, the
most fundamental work has been done on unidirectional fiber composites and,
therefore, fatigue lifetime is defined in terms of failure (or cumulative
damage) after the composite has undergone N cycles.

Residual strength degradation is used as a measure of fatigue failure of
fiber composites. When the static strength, defined as residual strength
after N cycles, equals the maximum stress amplitude, fatigue failure
occurs. Thus, the concept of residual strength remains an important

*parameter in the identification of lifetime for a unidimensional fiber com-
posite.

Strength degradation of laminates is a complex problem and presently cannot
e defined or evaluated strictly in terms of macromechanics. Hence, lami-
nae damage accumulation is measured in terms of stiffness reduction.

Yang (reference 13) derived a new fatigue residual strength degradation
model based on the assumption that the residual strength decreases mono-
tonically. He used the theory of periodic proof tests and the reliability
prediction for composites, which assumes a particular residual strength
degradation model (references 14-17) for unnotched composite laminates that
indicates that the residual strength R(N) after n fatigue cycles is a mono-
tonically decreasing function of N. The resulting fatigue life distribu-
tion follows a three-parameter Weibull statistical distribution.
Exceptionally good correlation between experimental results and theory was
found.

4
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Yang (reference 18) generalized the residual strength degradation model to
account for the effect of tension-compression fatigue loading. Again, good
corelation was found between theory and statistical distributions of resid-
ual strength and fatigue life. Further work by Yang (reference 19) resulted
in a three-parameter fatigue and residual strength degradation model to pre-
dict statistically the fatigue behavior of composite laminae under axial
shear loadings.

Based on a review of extensive fatigue failure information, Hashin and
Rotem (reference 20) developed a rational phenomenological theory of fa-
tigue life prediction under arbitrary variation of cycle amplitude. While
not specifically oriented toward fiber composites, the damage curves devel-
oped helped to establish a cumulative damage theory which could be used to
describe the uniqueness of the damage curve.

Chou and Croman (reference 21) developed equations for the distribution of
residual strength. Using the strength-life equal rank assumption of Hahn
and Kim (reference 22), it was shown that their equations compared well
with existing experimental results. The change of residual strength can be
of weak degradation, strong degradation, or increase in strength.

Kim and Park (reference 23) investigated the probability of a relationship
between static strength and fatigue life. Using two-parameter Weibull
distributions, proof testing was conducted at various levels of proof
stress to study the effect of proof loading on fatigue life. The experi-
mental results showed, for tension-tension fatigue loading, an excessive
proof loading results in premature failure in fatigue.

Whitney (reference 24) developed procedure that allows the generation of

an S-N curve with some statistical value without resorting to an extremely
large database. This approach is compatible with wearout or strength
degradation. It is recommended that a maximum likelihood estimator (MLE)
be used to determine Weibull parameters.

Matrix cracking was the focus of research conducted on composite specimens
by Highsmith and Reifsnider (reference 25), since it is recognized that
matrix cracking is the source of stiffness change which occurs early in the
life of a specimen or component. Building on earlier qualitative studies

. (reference 26), experiments were conducted to isolate stiffness changes,
due to matrix cracking, and create models wherein these changes can be
studied analytically. It was found that tensor stiffness changes due to
matrix cracking can be predicted using simple lamina stiffness reduction
principles and standard laminate analysis.

Quantitative studies on delamination growth and stiffness loss were con-
ducted by O'Brien (reference 27) using information found from research done
by Rybicki et al. (reference 28) which characterizes delamination growth
based on the rate of strain energy released, G. A simple technique was
developed to measure the onset and growth of delaminations in unnotched

*graphite/epoxy laminates. Using a critical value for shear modulus, Gc, it



found this particular value may be independent of the ply orientations
-hat make up the delaminating interface. Thus, the delamination resistance
curve (R-curve) and power law developed on [1. 30/t 30/90/90]s laminates can
be used to predict delamination growth in other laminates.

- The two-parameter and three-parameter Weibull distributions are used to
form residual strength models for fatigue analysis. However, Whitney
(reference 29) was able to overcome many of the disadvantages of Weibull
distributions by considering the lognormal distribution for analyzing cow
posite material data. Further, the lognormal distribution also can be used
with the wearout model, however, the probability density function should be
used instead of the cumulative probability function.

Ratwani and Kan (reference 30) emphasize that for composites, compression-

fatigue is more degrading, in terms of life, than tension-fatigue. Using
this assumption, a model for predicting compression residual strength of
composites subjected to compression-fatigue is developed and verified by
test data. The residual strength function is expressed in terms of the
static strength and an arbitrary function related to the size of the delam-
inations produced during N number of fatigue cycles.

Talreja (reference 31) developed a stiffness-based fatigue damage charac-
terization wherein changes in all four independent stiffness constants of
an orthotropic elastic lamina are considered. It was found that shear
modulus and Poisson's ratio changed significantly.

Variational techniques were used by Gottesman, Hashin, and Brull (reference 32)

to study the reduction of elastic moduli of unidirectional fiber composites
due to parallel cracks. Equations for upper and lower bounds of effective
elastic moduli were developed.

Using acoustic techniques, Holt and Worthington (reference 33) tested CFRP
and GFRP specimens during tension-tension cycling. For CFRP specimens,
continuous monitoring failed to provide warning of impending fatigue
failure. For GFRP specimens, a different damage process occurs for
failure. This process can be related to fatigue life.

O'Brien and Reifsnider (reference 34) measured stiffness reductions of
unnotched boron/epoxy laminates. Fatigue damage was observed under cyclic
tension loading in order to assess: (1) the extent of fatigue damage from
measured dynamic stiffness loss; (2) the anisotropy of fatigue damage from i
changes in the longitudinal stiffness, Eyy, shear stiffness, Gxy, and
transverse stiffness, Eyy, using a combination of unaxial tension, rail
shear and flexure tests; and (3) the validity of the secant modulus cri-
terion for predicting stiffness loss at failure from static longitudinal
stiffness changes measured during fatigue. These results showed fatigue
damage consisting of matrix crazing was fairly uniform throughout coupons
of [+45]s laminates. Fatigue damage in [O/90]s laminates was localized,
consisting of transverse cracks spaced along the specimen length, but for
[0/90/145]s laminates, fatigue damage consisted of both localized ply

6
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crazing and uniform matrix cracking. After applying tension-tension cyclic
loading in the X direction, for [O/90]s laminates, the relative order to
stiffness changes wasAEyy, AGxy, AEyy. Since damage growth and stiffness
loss are load-history dependent, the secant modulus criterion is not valid
for general application.

Fundamental fracture considerations were studied by Reifsnider and Jamison
(reference 35) in order to assess the manner in which prefracture fatigue
damage affects residual strength and the fracture process. It was found
that, while distinctive mechansims of damage have been identified and asso-
ciated with fatigue loading, no mechanistic scheme for associating the rate
of damage development with pertinent details of mechanical and material -.

circumstances has been found. Of course, rate equations can be empirically
associated with the damage development (as is done with schemes such as the
wearout model), but a single characterization of the rate of development of
fatigue damage (as defined by Reifsnider and Jamison) in general, based on
observed microdamage details and the principles of mechanics, has not been
found. Microstrains, due to internal stress redistribution, have verified
that the internal stress redistribution due to the types of fatigue damage
observed is of the type and magnitude that can explain the observed changes
in residual strength of composite laminates.

DAMAGE GROWTH MODELS.

Damage growth modeling essentially identifies a way fatigue damage can be
modeled. Wilkens, Eisenmani, Camin, Margolis, and Benson (reference 36)
emphasize that delamination growth is the fundamental issue in the eval-
uation of laminated composite structures for durability (fatigue) and
damage tolerance (safety). They cite the work of a number of researchers
(references 37-43) who indicate that when test conditions are extended to
explore failure mechanisms, delamination is observed to be the most preva-
lent life-limiting growth mode. Characterization of the behavior of delam-
ination has been approached by adopting and developing techniques for
coupon design, static and fatigue testing, data analysis, fracture analysis
for separation of modes, spectrum life prediction, and spectrum truncation.
Critical strain-energy release-rate values have been obtained for Mode I
(tensile opening mode) and Mode II (forward shear mode). The applied
cyclic load must be nearly equal to the critical static load to obtain
observable growth in the tensile opening mode. But for the graphite/epoxy
delamination in the forward shear mode, it is suggested that shear is the
chief subcritical growth mode for graphite/epoxy.

Fong (reference 2) has added a note of caution on the pitfalls of fatigue
damage modeling. While the goal is to predict the number of cycles to
failure (Nf), more attention should be paid to this critical value at the
local, specimen, and structure levels. Hence, confusion over scale is a
pitfall to which many authors succumb. Other pitfalls involve over-
simplification regarding the substitution of linear models for nonlinear
models, lack of delamination between two regimes of fatigue cycling, and
the lack of proper data acquisition and data analysis.

7
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Ramkumar (reference 44) investigated the effect of imbedded (idealized)
delamination on the compression fatigue behavior of quasi-isotropic
graphite/epoxy laminates. It was found that the predominant failure mode
in the test specimen was the propagation of imbedded delaminations in thetab region.

Experiments by Ratwani and Kan (reference 45) found that stacking sequence
had a significant effect on damage growth and failure modes of
graphite/epoxy coupons.

A fatigue/damage mechanism was observed by Badaliance and Dill (reference

46) through formulation of a damage-indicating parameter based on the
intralaminar microcracking of the resin and its application in conjunction
with a linear fatigue/damage model to predict spectrum life of
graphite/epoxy laminates. The damage correlation parameter is based on astrain energy density factor. A fatigue damage model by Broutman and Sahu
(reference 47) was used to predict spectrum fatigue life.

Sandhu, Gallo, and Sendeckyj (reference 48) employ a progressive-ply-
failure finite element program for predicting damage initiation and
progression. While this particular finite element method program serves as
a viable procedure for predicting the damage progression, attention must be
directed toward conducting additional experiments in order to verify the
mode. Further, the program should be extended to account for delamina-
tions.

Crossman and Wang (reference 49) conducted tension experiments on
graphite/epoxy laminates, recognizing that the process of composite lami-
nate fracture under static or fatigue loading is known to involve a sequen-
tial accumulation of damage, in the form of matrix-dominated cracking,
prior to final fracture by fiber breakage in the primary load-carrying
plies. Using information from studies made by a number of researchers
(references 50-53) who found that ply thickness has an effect on damage
mode and delamination, studies were made to delineate the degree of struc-
tural modeling necessary to predict fracture successfully in composite
laminates. It was found that while stress and energy methods prove useful
in predicting the onset of transverse cracking, the density of transverse
cracking, and the onset of delamination at the laminate free edges, more
detailed analysis is necessary for prediction of the saturation density of
transverse cracks, delamination growth under fatigue loading, and the ulti-
mate strength of the primary load-carrying plies.

Reddy (reference 54) conducted extensive fatigue testing of coupons, struc-
tural elements, and full-scale helicopter blades. S-N curves were developed
using data from coupon and element tests. Using statistical analysis to
adjust these curves, a revised Miner's cumulative damage method was used to
calculate fatigue life. A damage growth test was made of a partially failed
blade. These test results substantiated the excellent fatigue and damage
growth characteristics of the composite blade.
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Oldyrev (reference 55) developed a new method of fatigue testing which per-
mits the fast tests of one specimen to be used to determine the fatigue
life of the material for three to six load levels. The proposed method is
based on the laws of fatigue/damage accumulation.

Poursartip, Ashby, and Beaumont (reference 56) developed a damage function

which can be determined by measuring the changes of modulus with cycling.

Structural models based on continuum-fracture mechanics principles were
developed by Bolotin (reference 57). In particular, micromechanics con-
cepts related to crystalline-fiber structure were used to establish
equations for the growth of fatigue cracks.

The use of laminate stiffness reduction as a means of interpreting damage
was developed by Jamison and Reifsnider (reference 58). Various matrix
damage modes were related to the corresponding matrix cracks which formed
this damage.

BASIC EQUATIONS OF IMPORTANCE.

During the past ten years, significant theoretical and experimental studies
have been conducted on fibrous composite materials. While the basic
equations associated with unidirectional fiber composites are important,
the problems related to the fatigue/failure mechanisms and the prediction
of fatigue/damage and lifetime of a particular laminate are much more
complex. In particular, the somewhat random nature of mechanisms forces
one to employ statistical theories and means, in addition to macromechanics
theories, to generate equations of importance and empirical expressions to
explain these important factors.

Hashin (reference 4) indicates there is a family of failure criteria, each
associated with a different lifetime, wherein fiber rupture, matrix
cracking, and fiber/matrix interface bonding are directly related to the
failure process. These manifestations can be defined under the broad cate-
gory of damage. In turn, damage results in a loss of stiffness and the
decrease of residual strength and lifetime during fatigue cycling. The
mechanical study of internal flaws is often called damage mechanics. He
cites important fundamental qualitatively-oriented work by a number of
researchers in the development of a damage accumulation model for tensile
failure in the fiber directions when fiber strengths are statistically
scattered, and the investigation of compression failure in fiber direction
in terms of fiber buckling. He assumes the average stress state

F(r. ) = I

Using the general quadratic failure criterion proposed by Tsai and Wu

F ijkl T rkl + F. . = I (2)
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(reference 59) leads to the description of the failure surface by a single
polynomial in the stresses. Using the previous equation for plane stress
results in

F + 1 F 222 1F1111 - i ,+F2222 = 1

A ~A T T

(3)
F 1 1 _ 1 F 22 1 111+ + 2

QA rA rT T

where YAAT - represent the ultimate stresses in the fiber in the
transverse directions.

Failure modes are classified as tensile/fiber/mode, compressive failure
mode, and the matrix mode. See figures 1 and 2. Thus, failure criteria
for the tensile/fiber and tensile/matrix modes are( 2 2

+ 
A

TAtA
2 2(4)

(; 22~~ + <12) 1

Experimental and analytical results are shown in figure 3.

In order to examine the problem related to failure criteria, S-N curve data
are used instead of plane stress information. Thus,

F( Ti j , R, N) = 1 (5)

where R is the ratio of minimum and maximum amplitude in constant amplitude
cycling and N is the number of cycles to failure (lifetime). Equation (5)
represents a family of failure surfaces in stress space defined by the
parameter N.

10
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Utilizing the transverse isotropy of the material with the quadratic
approximation, Hashin has shown that for fully reversed cyclic loading,

R -1, the failure criteria are given by

2I 2 :

12_I + = Fiber Mode

(6)
2 !2

()'y + = 1 Matrix Mode

* The results found using the specimen in figure 4 agree reasonably well with

theory even though the cyclic stress ratio is R = 0.1. See figures 5

and 6.

Hashin (reference 60) emphasizes that a fundamental problem concerning the

engineering use of fiber composites is the determination of their

resistance to combined states of cyclic stress. Analysis of fatigue

failure based on the stresses obtained is not possible without failure cri-

teria for three-dimensional information.

Since the damage which occurs during fatigue cycling is so complex, it is "

possible only to develop fatigue failure criteria for cyclic stress by

using fatigue failure criteria for simple states of stress.

Hashin continued his investigation by considering the scatter problem. He

I assumed that the different lifetimes due to scatter for identical specimens

ire due to the differences in microstructure. Therefore, if a specimen

could be reproduced exactly, it would exhibit no lifetime scatter.

However, these specimens follow some type of deterministic failure cri-

teria.

Assuming that the specimens all fail in the matrix mode and follow the

equations developed previously

2 2

+ (7)

I -
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the following reasoning is suggested

-22 a s 2 2

(8)
T12

where s22 and s12 are nondimenslonal. Using S and N criteria,

[ 2 2]
T22\T1 2

C (R, N) = + (9)

Tm M~

Using M specimens, the mean of V is

1 (RFN CT (,M,1ARN)1  (10)
M=1j

and the variance v is

1 F 2
v(R, N) = I M [m - >(1)

The mean failure stresses are given by

r 22> <T> s22 (12)

<T'12> = s >S12
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.ashin points out the fact that there are practical difficulties, since
stress can be controlled by a testing machine durinq fatigue testing, but N
cannot be controlled. Thus, in order to perform a 'vertical" stress
average (see figure 7), it is necessary to have a very large number of test
data.

zN

• .o.,

N.. A AVERAGE; CONSTANT o

Ioq

FIGURE 7. TEST DATA AVERAGING

A characterization (or characterizing) of a composite material in regard to
fatigue is simply a description of characteristics or peculiar qualities.
As it was mentioned earlier, Whitney (reference 24) developed a procedure
that allows the generation of an S-N curve with some statistical value
without resorting to an extremely large data base. He assumes a direct
relationship between static strength distribution, residual strength
distribution, and distribution of time-to-failure at a maximum stress
level. This approach is called the "wearout" or "strength degradation"
model. Whitney's model is compatible with the wearout model, but does not
require any relationship between the fatigue life and residual strength.

Whitney (reference 24) used a fatigue characterization model used by Hahn
and Kim (reference 61) which assumes a power law S-N curve and a two-
parameter Weibull distribution to failure. These assumptions are mani-
fested in the following equations

cr4sb - 1 (13)
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R(N) + exp (14)

N~ J

where R(N) is the reliability of N (probability of survival), No is the
characteristic time to failure, ando, is the fatigue shape parameter.

While a plot of log S versus log No produces a straight line, it is more
advantageous to construct an S-N curve. Thus,

S=K -InR (Nj]-.fb N (15)

for any level of reliability.

In order to reduce the data, Whitney used a two-parameter Weibull distribu-
tion to fit the time-to-failure data at each stress range, obtained through
a data pooling system, and determined b and k by plotting log S versus log
NO. . i, the estimated life, is found from

n.

^7oi -_ 1 (16)ni j=1 
2f i

Yang and Du (reference 62) have investigated one of the important problems
in the design of aircraft structures. This problem deals with the predic-
tion of the fatigue behavior of composite laminates or joints subject to
service loading spectra. Since the fatigue model is based on failure
mechanisms, it is independent of stacking sequence. Herein lies its advan-
tage over other models.

The two-parameter Weibull distribution is used to describe the pattern of
the ultimate strength. Normalized ultimate strength is represented by

FR(o)(X) P[R(o).]= 1- exp( -x4 ) ; x>O (17)
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where FR(o)(x) is the distribution function of R(o) and P indicates the
probability of the ultimate strength occurring. At the end of the first
cycle block (mission), the normalized residual strength is

R(I) = R(o)- I[R(o)] (18)

where [R(o)] is the reduction of the residual strength resulting from the
application of one cycle block. Therefore, the normalized residual
strength at the end of m cycle blocks is

R(m) : R(o) - ml [R(o)]

The normalized absolute maximum stress in the cycle block is

rilax - max ji
(20)

l i- L

where it is assumed that fatigue failure occurs when the applied stress

exceeds the residual strength. Now

y (-in [I FM (m)] ') (21)

and

Y rmax
(22)

(y)

The distribution function of the fatigue life is

r F T i - P R(,) F 1 R(m) r ax (23)L J i



Yang and Jones (reference 63) used the three-parameter fatigue and residual
strength degradation model for unnotched composite laminates to describe

the effect of load sequence on the statistical distribution of the fatigue
life and the residual strength under n - stress levels of cyclic loading.
The following equation resulted

RC(nl) RC(o) - jcKSbn (24)

where R(nl) and R(no ) are the residual strengths at n and no cycles
(n I > no) respectively,jS is the scale parameter of te ultimate strength,

b, c, and k are three parameters to be determined by tests, S is the stress

range,t:ax-cmin, and R is the stress ratio. Letting no = 0 and nI = 1
where R(o) is the ultimate strength.

It is assumed that the ultimate strength is a statistical variable and

follows the two-parameter Weibull distribution.

F (x) P [R(o)e x I exp -(x) (25)

After applying high-low and low-high constant stress amplitude load

sequences, they arrive at the following equation for the fatigue life,

( n )  P [N12< njN2

P P[Rc(o) - 2nx ,Sc KSb < N C KSl (26

- 1 -fl + trna
S exp{n max c

•* '5
N2

which exhibits the characteristics of a three-parameter Weibull distribu-

Stion.
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!sing a probability expression that describes the fatigue failure at the

nth load cycle

pnPR(-1 Tna n-i

C C

-+ .nmax (27)

i*1 N.

Thus, the distribution of the fatigue life is

FN(n )  P N 1 - nJ

~~n-J

l-ep ~ T nmax) j (28)I -exp -+

L(i=1 Ni

Finally, Yang and Jones establish that the statistical distributions of

both the fatigue life and the residual strength do not depend on the load
sequence before the nth load cycles.

Coupon specimens of 5208/T3000 graphite/epoxy [+45°]2 laminates were
tested using information from research done by Rosen (reference 64) and

Hahn (reference 65). Results illustrate the correlation between the
theoretical and measured fatigue life distributions. It was shown that the
model is not a linear cumulative damage model.

CORRELATION OF EQUATIONS WITH COMPONENTS.

- Demuts, Whitehead, and Deo (reference 66) conducted experiments on
carbon/epoxy coupons and built-up panels undergoing uniaxial loading.
Damage tolerance to processing and normal service were assessed during
these experiments. Using data derived from studies of previous researchers
and tests performed in this study, they correlated the results found for
coupons with those of two-bay built-up panels found in multispar and
multlrib wing skin designs.

20
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The most severe relative strength loss was due to low velocity impact with ""
a blunt semispherical-shaped impactor. The size of this impactor ranged
from 1.27 centimeters to 2.54 centimeters in diameter. The impactor veloc-ity was 46 m/sec. Damaged areas were measured, and it was found that a

damage line of 3.7 centimelers corresponded to a strength loss of 58 per-
cent, and a damage line of 4.9 centimeters corresponded to a strength loss
of 73 percent. They concluded that a structure which has not been designed IN
adequately for damage tolerance may fail without exhibiting any visible
signs of damage. See figures 8 through 11.

The M-R panels have higher static strength than the M-S panels. It was
found that damage grew in both panels when the constant amplitude
compression-compression (R = 10) fatigue load severity reached 65 percent
of the damaged static strength. It was pointed out that damage growth is
not well characterized.

Williams, O'Brien, and Chapman (reference 67) emphasize that an important
consideration in attaining the potential structural efficiency improvements
with resin matrix composite structures is the need to improve their
resistance to impact damage which may occur in normal service, and to
improve resistance to delamination which could result from unanticipated
out-of-plane loads. This has resulted in manufacturers directing their
attention toward developing materials with tougher resin matrices.
Further, toughness is defined as the ability to deform elastically under
interlaminar shear and peel stresses without undergoing brittle fracture,
which many of the present resin matrices are experiencing.

In order to meet this new challenge of toughness of new materials and addi-
tional requirements, the NASA Aircraft Energy Efficiency (ACEE) Project
Office and their industrial contractors have identified and selected a set
of "standard tests" which are now used by all the ACEE contractors and
researchers at Langley Research Center. The five tests include interlaminar
fracture (edge delamination tension and double beam cantilever test), notch
sensitivity (open-hole tension and compression test), and the effect of
impact damage on compression strength. NASA specifications for standard
tests were followed. See figure 12.

Williams and Rhodes (reference 68) have developed a tension test to be
used to measure interlaminar fracture toughness of composites using tough
matrix resins. The modulus, Elam, and the nominal strain at the beginning
of edge delamination are measured while the tension test of an 11-ply
or 8-ply laminate is tested.

The strain energy release rates, G, are solved in a closed form equation
for evidence of edge delamination growth (reference 69). The E* term is
the modulus of the laminate if the 0/90 interface is completely delami-
nated, and Gc is a measure of the interlaminar fracture toughness.

21
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Regarding damage tolerance, Williams, Anderson, Rhodes, Starnes, and Stroud
kr- ference 70); and Carlile and Leach (reference 71) are responsible for
the aforementioned test procedures. Using the low-mass/high velocity test
methods appears to cause the most reduction in strength.

Haftka, Starnes, and Nair (reference 72) studied global damage tolerance

and the mass penalty associated with improving the global damage tolerance
of optimized aircraft wing structures. In order to establish damagetolerance criteria, structures would be required to carry a percentage of

the design load when a major structural member is destroyed.

Using three examples, they show that the mass of the damage toleranceL design depends on the structural redundancy and the percentage of load
being carried in the damage configuration. See figures 13, 14, and 15.
The buckling load is,

N IT Et (29)

3(1 _V2 )L 2

where E is the effective longitudinal laminate modulus and Y is the lami-
nate Poisson's ratio. After damage, the plate can carry a fraction, f, of
the original undamaged buckling load. Letting,

tI (30)

t 2

the residual strength is calculated based on the assumption that the effec-
tive modulus and Poisson's ratio remain the same, and it is assumed that
there is no postbuckllng stiffness. For a residual strength of (fxN)

r + ) (31)

(1 3

The residual strength has its lowest value when (3= 1) and (f = 0.25). If

r(x) 0 LI+ 3 ) (32)
3

(1 +/)
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(f = 1) and ( 1= 1), and (L(= 1.59) the mass penalty for damage tolerance is
59 percent. Thus, there is a great deal still not known about fatigue of
complex composites. In particular, it was found that damage to the tension
cover-skin panel reduces the strength of the wing more than damage to the
compression cover-skin panel.

Poe (reference 73) investigated the damage tolerance of bonded composite
stringers loaded in tension. Tensile failure tests on 50 graphite/epoxy
composite panels were made with two sheet layups and several stringer con-
figurations. Slits were cut in the middle of the panels. See figure 16
for the configuration of stiffened panels. Figures 17 and 18 show test
results for panels with (4= 0.7) and ((= 0.5). Figure 19 shows a shear-lag
analysis where the stiffness is given by,

(Et) = (Et)sh + (Et)St (33)

Esh and Est are the sheet and stringer Young's modull. For a large
effective crack width,

SCF Wa

Wa (34)
(1 +d,)j

Figures 20, 21, 22 and 23 show that stress intensity factors can be synthe-
sized. However, substituting,

K Q E
Q) C X (35)

into

>.- (36)
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ingle design equation is introduced for stiffness panels with any sheet
la, ups and made of any material. The equation is shown as a single design
curve in figure 24.

1.0

Modified prediction
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Failing
strain (4 5 /0 / '4 5 / 0 )2 S
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Depends on sheet layup ( =1 - vX Ey/E -
SII I I :i

0 .1 .2 .3 .4 .5 .6
2 Wa/(I+axe -0.194a), in.

FIGURE 24. DESIGN CURVE FOR STIFFENED PANELS

CORRELATION OF BASIC EQUATIONS OF IMPORTANCE WITH RESULTS FOUND FROM
TESTS BY AIRCRAFT MANUFACTURERS' COMPONENT

Kommensurate with the correlation of basic equations of importance, results
found from tests by aircraft manufacturers performed on components are as
follows:

1. In July 1983, Ansell (reference 74), head of research at Rensselaer
Polytechnic Institute's (RPI) Composite Aircraft Program Component

(CACOMP), studied the fatigue load transfer that took place between the
connecting lugs at the ends of the structure and the portions of the well-
distributed structure. The drag strut of the Lockheed LI011 is an example
of the primary structure made of graphite/epoxy. In the concluding remark,
RdI demonstrated a load/weight graphite efficiency of 425 percent greater
than steel.
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2. Rotem (reference 75) of Advanced Research and Applications Corp. in
conjunction with Ames Research Center, presented a detailed description of
fatigue functions - the influence of temperature in tension-tension fatigue
behavior of graphite/epoxy. Lockheed-fabricated specimens were highly
representative of the components which were tested.

3. In April 1981, Ramkumar (reference 76) of Northrop Corp. reported in
his paper the compression fatigue behavior of graphite/epoxy laminates in
the presence of imbedded delaminations. Three different stacking sequences
of a quasi-isotropic layup (0/45/90-45, 45/90-45/0, and 90/45/0-45) and
64-ply thick specimens were provided by Lockheed as part of a component.
His report provided very detailed results of compression and fatigue-life
tests.

4. Approximately three months earlier, Lieblein (reference 77) conducted
a survey of the long-term fatigue strength properties of fiberglass-
reinforced plastic structures. Included in the survey were data from
aircraft radomes with up to 19 years of service, such as the fiberglass
laminate rotodome of the E2A and the filament woven fiberglass nose radome
of the A6, both manufactured by Grunman Aerospace Corp.

5. In the same period, RPI presented the CACOMP in conjunction with the
Boeing Company. RPI's research team, headed by Ansell (reference 78), pro-
vided a detailed report of fatigue testing and analytical work on the main
spar/rib for the Boeing 727 elevator.

6. In 1980, an investigation was conducted by Rhodes (reference 79),
Structural Mechanics Branch of NASA Langley Research Center, to study the
damage tolerance of composite compression panels using graphite/epoxy spec-
imens. Damage due to impact by a 1.27 centimeter diameter spherical pro-
jectile was representative of wing-skin panels. The results indicated that
substantial improvements in the damage tolerance of graphite/epoxy struc-
tures can be achieved through the proper combination of materials and
structural design.

7. In the proceedings of the Japan - U.S. Conference in Tokyo, 1981, Tada,
Ishikawa, and Nakai (reference 80) conducted tests to perform weight
reduction in the aircraft structure of the quiet STOL research aircraft.
Finite element analysis was used to obtain results of load-displacement and
load-strain relations for the carbon fiberglass reinforced plastics of the
rib/spar models. Stiffness moduli of a composite plate were also reported
in their paper.

8. From the Technical R&D Institute of the Japan Defense Agency, Yamauchi
and Mogami (reference 81) explained the application and development of the
advanced composite ground spoiler for C-i medium transport aircraft.
Included in the report was an explanation for the application of
graphite/epoxy materials with high strength. This stiffness ratio was
representative of the weight characteristics of the C-1 ground spoiler. In
the same conference, Yamauchi and Mogami (reference 82) also presented the
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design, fabrication and development of graphite/epoxy rudders for flight

tests of the T-2 jet trainer. The primary objective was to develop a
flight certifiable test program in order to evaluate composite structures
in an actual flight environment. The paper also covered environmental
effects and compared the behavior of skin plies undergoing orientation,
durability and vibration tests.

9. Finally, Takagi and Idei (reference 83) conducted a structural test
program for Fuji Heavy Industries and included a full-scale test (rigidity
and fatigue strain tests) for the T-2 military jet trainer. The paper also
describes the development status of the composite vertical stabilizer for
T-2, the graphite/epoxy helicopter tail rotor, the graphite/epoxy T-2
rudder, and the Kevlar-graphite/epoxy 767 wing/body fairing and main
landing gear.

The matrix (table 1) which identifies fatigue composite material usage in
commercial/civil aircraft is based primarily on information taken from
Jane's All The World's Aircraft. Also, where appropriate, and particularly
in regar toprsentig the latest information possible, the aforementioned
information has been supplemented with data from other sources.

For this report, in concert with FAA, aircraft manufacturers, NASA, and
Schwartz (reference 84), primary structures are defined as horizontal sta-
bilizers and vertical firms. Considering developmental work based on
extensive, recent studies (reference 85). vertical stabilizers and wings
were included as primary structures. Also commensurate with this
rationale, secondary structures include edges, spoilers, rudders, cambers,
fairings, and control surfaces.

Information included in the matrix represents the digestion and cullation
of data from at least 69 sources within Jane's All The World's Aircraft and
other related sources. While commericalTcil Tr 7c-ra-ft information is"
included In source numbers 1 through 43, a limited amount of military-
related comparison information, while not required, has been included in
source numbers 44 through 69 in order to enhance the report appropriately.

In order to highlight those aircraft with high amounts of composite usage,
in concert with the study of Composite Material Fatigue/Damage Tolerance,
an asterick ("*"-high amount, "**"-significant amount) has been assigned to
the corresponding aircraft manufacturer. The Reference Number serves as
project indentification for the materials extracted from Jane's All the
World's Aircraft, 1975 to 1984.
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TABLE 1. MATRIX FOR AIRCRAFT FATIGUE COMPOSITE MATERIAL USAGE

APPLICATION

COMPOSITION Wing Tal DESIGN

.. 0

4) ~ ~ 0 0

Commercial/Civil z V) L

CV 4-'1 -

Cx =3 4o,1

Ref No. Manufacturer [Type,Year] (D U U c ( U A U

1. Avtek [400. 6/83] X X X x
2. Boeing [737, 4/81) X X X x
3. Boeing (757, 2/82] X X
4. Boeing (767. 8/82] X X
5. Boeing Verto [234, 1983) X x
6. Cessna [152. 1983] x X
7. Cessna (Stationair, 1983) x x
8. Cessna (Centurion, 1983) X x
9. Cessna [Citation, 1982] X X X

**10. Composite Aircraft [Eagle. 80) X X x x
11. Hillman [360, 1981] X X
12. Hughes (500, 1981] X x

**13. Lear Fan LTD. [2100, 1982] X X X x

14. Lockheed (L-1011, 1983) x X X X
15. McDonnell Douglas [DC-9, 1978) X X X
16. McDonnell Douglas (MD80, 83] X X X X X X X
17. McDonnell Douglas [MD100. 83] X X

*18. Gyroflug (Speed Canard, 83) X X X
19. Airtech [CN 235, 83] x x x

*20. SAAB-Fairchild (340, 82] X X X Xl 'X

21. Piper [PA32301, 1979] X x
22. Piper (PA31325, 1983) X X
23. Piper [PA31350, 1981) X X

24. Mike Smith Aero (X099, 1981] X X X XI

25. Varga [2150A. 1981) x X x
*26. Ames Indust Corp [AD-i, 79] x x .-

27. Omnlonics (Dolphinair, 82] x x x
28. Spitfire [Mark II, 1979] X x
29. Swearingen [SA226TC, 80) X X
30. Airbus Industrie [A300, 82) x x
31. Bellanca [Skyrocket, 82] X x x

**32. Rutan [Erizzly, 1982] XI X X

33. Schape [5350, 1981) x x x x
34. Mudry [Cap2l, 1980) X "

35. Farrington [18-A, 1974] X x
36. Turner [T-40A, 1974] X X .

37. Bede [80-7, 1975] X x x
38. Miller [JM-2, 1974] X X x x

"39. Rutan [variviggen, 1972] X x x
.40 Rutan [varieze, 1974] X x X x -

41. Van [RV-3, 1976] X -x x
42. McDonnell Douglas [DC-IO, 83] x x x x

"4 . Beechcraft [Starship] X Yxx

P - Primary Structure
S - Secondary Structure
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TABLE 1. (CONTINUED)

APPL ICATIONb

COMPOSITION Wding Tall DESIG4
a.tkV ) (A 0.

*4- L
' 0

m i i t r M. L. C 0 )
C-L 0- 3 0 : 4

M ~ M. I- L- 0-& - C -- 0
6- Cf .6U 4 0 w -

Ref No. Manufacturer (Type,Year) l 4 i- U j

44. Boeing [737. 4/811 x X X
45. Boeing Vertol [107. 1981] x x
46. Boeing Vertol [414. 1980] x x
47. Boeing Vertol [360. 1984) X X X

**48. Composite [Eagle, 1980] X X x x x X
49. Fairchild Republic [MGT, 82] x x
50. Gen. Dynamics [F16-B. 83] x X X

*51. Gruwnan [Hawkeye. 1981] x X
52. Gruman [F-14. 1981] X x
53. Gruman [FSW. 1982] X X X
54. Gulfstream [Gulfstream IV, 82) X xX
55. Kaman [Seasprite. 1984] x x
56. McDonnell Douglas [F18A, 82] 1
57. Sepecat [Jacuar, 1982] X X x
58. Northrop fF-20, 1982) x x
59. Northrop [F-18L. 11982] X X x

*60. Rockwell [0-lB. 1982) x x

x "x

* 61. Sikorsky [CH53E. 1982] X x x
* 62. Sikorsky [UH-60A. 1982) 1

* 63. Skr y[-76, 1982) X x x x x x

65. Cessna [337, 1980] x x
66. NGEA (WGER) [ALPHA Jet, 82) X K x

* 67. McDonnell Douglas B/AE
[AV-8B. 81] K K

68. Panavia [Tornados, 1981) 1
*69. Schapel [SA981, 1980) K K X K x

P =Primary Structure
S =Secondary Structure
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NON-DESTRUCTIVE TESTING METHODS OF FIBROUS COMPOSITE MATERIALS

With respect to prospective non-destructive testing methods of fibrous com-
posite materials, there are six presently recognized approaches:

a. Video Thermography Technique

b. Radiography

c. Surface Temperature Measuring Technique

d. Acoustic Emission Monitoring

e. Ultrasonic

f. Holography

VIDEO THERMOGRAPHY TECHNIQUE.

Real-time video-thermography can be used to investigate initiation and
progression of subsurface damage caused by fatigue. This technique differs
from most others because the materials are subjected to some steady-state
mechanical energy, such as fatigue loads or low amplitude vibration, that
activates heat sources near the damaged regions.

Experimental observations are discussed for a variety of composite
materials including boron/aluminum, boron/epoxy, and graphite/epoxy by
Henneke, Reifsnider, and Stinchcomb (reference 86).

RADIOGRAPHY.

Radiography includes a number of different techniques (X-ray diffraction,
Gamma ray, Penetrant, etc.) but they are all basically alike in that a
penetrating beam of radiation passes through an object. As it does, dif-

ferent sections of the object, as well as discontinuities, absorb varying
amounts of radiation so that the intensity of the beam varies as it emerges
from the object.

Olley (reference 87), using low frequency X-radiography, has detected forms
of fatigue damage in foamed PVC/fiberglass-reinforced plastic composite

panels.

In composites, radiography is used to determine fiber alignment, intimacy

of contacts in bonded areas, defects in sandwich constructions, and in
reviewing core damages including voids, porosity, fracture, damaged fila-
ments, delaminations and contaminations.

O'Brien (reference 88), Yeung, Stinchcomb, and Reifsnider (reference 89),
and Daniel, Schramm and Liber (reference 90) demonstrated the application
of radiology to detect delamination and damage propagation in graphite
laminates.
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SURFACE TEMPERATURE MEASURING TECHNIQUE.

Surface temperature monitoring by thermocouples and temperature sensitive
strips/coatings as applied to glass/epoxy laminates (-45 +45) was
demonstrated by Nevadunsky et al. (reference 91). The purpose of this
investigation was to detect early non-destructive inspection techniques.

ACOUSTIC EMISSION MONITORING (AEM).

This technique involves placing a series of piezoelectric transducers about
the specimen, applying a load, and "listening" for slippage and debonding.
Several studies have demonstrated the feasibility of acoustic emission for
inspecting graphite, boron, and fiberglass parts by Weghreter and Horak
(reference 92), Laroche and Bunsell (reference 93) and Kim (reference 94).

ULTRASONIC.

Ultrasonics, like radiography, includes a number of different techniques.
In ultrasonic inspection, a beam of ultrasonic energy is directed into a
specimen, and the energy transmitted through it is indicated. Yeung,
Stinchcomb and Reifsnider (reference 89) applied this technique for the
case of characterization of constraint effects on flaw growth. In another
reported experiment, Daniel, Schramm and Liber (reference 90) also applied
ultrasonic monitoring of flaw growth in graphite/epoxy laminates under
fatigue loading.

The four ultrasonic methods used in composite testing are: (1) pulse echo,
used to inspect fiberglass-to-fiberglass bonds and delamination in
fiberglass laminates; (2) pulse echo reflection plate, used to inspect
delamination in thin fiberglass or boron laminates; (3) through-
transmission, used to inspect thick fiberglass laminates; and (4) resonant
frequency, used to detect fiberglass-to-fiberglass bonds where the exposed
layer is not too thick.

In order to direct the sound wave through the test material, it usually
requires a liquid contact or sometimes liquid immersion of the part.
Therefore, it is necessary to provide a pair of transducers on each side of
the structure to be tested.

HOLOGRAPHY.

Holography is an optical technique based on the optical interference pro-
duced by superposition of coherent light waves reflected from the object
under consideration (object beam) and those of a coherent reference beam.
A laser is an ideal source of coherent monochromatic light.

One of the most important applications of holography is the measurement of
small surface displacements in a body produced by mechanical or thermal
loadings. Such applications were discussed by Rowlands and Stone
(reference 95).
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CRITIQUE OF NON-DESTRUCTIVE TESTING METHODS.

In regard to the aforementioned approaches, no one particular non-
destructive technique can be used with certainty for all configurations.
Test methods must be selected and tailored to each item. The geometry of
the parts must also be taken into account when determining the most
appropriate test media.

For inspection of damage after dynamic fatigue loading, ultrasonic tech-
niques should be included among the most useful methods. However, to
direct the sound wave through the test material usually requires a liquid
contact. Ultrasonics is a valuable inspection means for smooth-surfaced
fine-grained materials oriented in a particular scan plane. Generally,
small voids cannot be detected.

Radiography is probably one of the oldest and most commonly used tech-
niques, but it requires special precautions to avoid hazards from
radiation. Films are relatively expensive, and processing can require con-
siderable time.

Machine noise has long posed a problem in acoustic emission monitoring.
This requires the use of noise insulation techniques to eliminate unwanted
machine noise. However, the emission count rate during AEM has been found
to be a good indicator of the damage growth rate in specimens. Further- -"

more, massive delaminations can be identified with extraordinarily large
amplitudes.

Surface temperature monitoring has also proved to be an effective means to
detect fatigue damages at the early stages, because heat generation is a
consequence of fatigue damage such as delamination and cracking.

Holography is effective as far as detecting delaminations and cracks in the
surface plies, both matrix cracks and fiber breaks, and flaws near fine
edges. It does not, however, detect subsurface matrix cracking.

Above all, video thermography relates the thermal patterns more directly to
the stress field in the material and, hence, is a more appropriate model
for studying the mechanical behavior of composite materials.

In addition to currently used techniques and refinements to them, the small
angle neutron scattering method (SANS) seems to be another promising tech-
nique. The high penetration and selection scattering properties of
neutrons provide a powerful capability to study, for example, the changes
in the microstructure of bulk specimens. The principal drawback is that
the required fluxes are, at present, available only from research reactors.
Thus, the method is limited to the study of prototypes rather than in-field
examinations.
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POTENTIAL OF COMPOSITE MATERIALS I
In aircraft structures there has been a remarkable increase in the use of
composite materials. These materials offer a considerable weight reductionwhen compared to conventional metals.

The adaption of such materials to aircraft structures has been limited to
secondary structures, such as control surfaces and fairings. The applica-
tion to primary structures, such as the vertical and horizontal stabi-
lizers, including the wing, remains one of the important research
projects to be validated.

The selection, ultimate fabrication and non-destructive testing techniques
of these secondary structures led to the confidence to select and build
several primary structures. The final stage is, of course, the all-
composite aircraft.

In the materials area, emphasis will be on developing and characterizing
lower cost material systems, for example, improved epoxy-resin systems with
reduced sensitivity to environmental factors, and cost-effective and
reliable high temperature resin systems.

Many composite materials today do not fit the production process required
to produce an economical and competitive product. In the case of aerospace
applications, the most distinguishing characteristics of an advanced com-
posite structure are rigidity, load-bearing capability, and capability to
withstand high temperatures. Graphite fibers may very well remain high on
the fiber reinforcement list of the future. The polyacrylonitrile-based
(PAN) precursor graphite fibers have been the standard for many aircraft
applications for years, but the pitch-based fibers offer better process-
ability and a potential cost-break as well. Graphite fibers can be made
stronger, also. By alloying graphite fibers with boron, both strength and
modulus can be significantly increased.

The demand for advancements in composite materials and economical processes
are presented by Goldsworthy (reference 96). He examined the newest com-
posite manufacturing technologies In pultrution and filament winding. From
the designer/builder's perspective, Goldsworthy predicted the near future
in these manufacturing technologies. In another paper, Kershaw (reference
17) studied two new series of epoxy/resin systems - EPON Resin 9302 and
EPON Resin 9310.

As high temperature applications for composites increase, the use of
graphite/polyimide will also grow, especially in engine technology. This
will be the time to exploit the advantages of applying reinforced com-
posites to the maximum possible extent in a turbine engine.

Composites lack the ductility of metal. Schwartz (reference 84) predicted
the potential emergence of fiber-reinforced advance titanium (FRAT), which
is a mixture of composite and metallic technologies, to combine the low-
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cost superplastic-forming diffusion-bonding (SPF/DB) fabrication techniques
for titanium with the high strength and stlffnesses of advanced composites.

As manufacturing technologies advance, the demand for non-destructive

inspection and examination will increase. The effect of a resin-poor
defect is potentially different from that of an impact-damage defect.
Therefore, it is essential that non-destructive methods be able to dif-

ferentiate between these and other types of defects. There are indica-
tions, as reported by Schwartz (reference 84), of advances in the
state-of-the-art of this technique of non-destructive testing of resin-
matrix composites.

Advanced composites still represent a strange new technology to the rest of
the American industry. The major driving force here is, of course, light-
weight, and the main negative factor is cost. Nonetheless, extensive
applications of advanced composites are planned for components on existing
airplanes and new airplanes which require structural redesign (references
85, 98).

RESULTS

1. Fundamental work in the area of Composite Material Fatigue/Damage
Tolerance continues to provide significant insight into the basic
macromechanical behavior of fiber-matrix composites.

2. Presently, there is no precise definition regarding what constitutes
fatigue damage of the overall laminate. This is due to the fact there
are no established fatigue failure criteria for combined cyclic
stresses and the inherent difficulty in predicting lifetime under
variable amplitude cycling.

3. The stress-based methodologies and strength degradation models continue
to provide insight into the macromechanical behavior of fiber-matrix
composites, but more work is needed in the area of aamage growth models
if this procedure is to become a reliable one for evaluating these
materials.

4. It is necessary to include probability theories as well as macro-
mechanics and micromechanics theories when investigating the mechanical
behavior of fibrous composite materials.

5. Loss of strength associated with compression stress-oriented impact
damage still remains as a major problem regarding fatigue/damage
tolerance.
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6. Many manufacturers are directing their attention toward developing
materials with tougher resin matrices, since delamination is par-
ticularly critical when the component is subjected to unanticipated
out-of-plane loads.

7. Aircraft manufacturers rely heavily on results found from specimen-
component correlations regarding fatigue/damage tolerance simulation.

S. Presently, there are six recognized non-destructive testing methods for
testing fibrous composite materials. However, each test method must be
selected and tailored to each item, and the geometry of the parts must
also be taken into account. For inspection of damage after dynamic
fatigue loading, ultrasonic techniques are quite useful. Holography is
effective in detecting delaminations and cracks in the surface plies.
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